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Abstract— The ability to interact verbally with humans
is a key requirement of many social robots. It is common
however for robot speech to lack contextual human-like
prosody, making it intelligible but seeming inexpressive and
cold. We investigated the effect that applying human-like
prosody to synthetic speech had on aural comprehension
during human-robot interaction. A text-to-speech system
was used to generate synthetic sentences in two conditions:
‘default’ and ‘human’(informed by voice actor). A speech-in-
noise experiment was then performed that required partic-
ipants to transcribe perceived sentences spoken by a robot
in both test conditions. Overall, we found no significant
difference in comprehension between sentences spoken using
the synthetic voice with prosody and the unaltered synthetic
voice, however significant differences in comprehension were
detected for shorter sentences (n=50), and among partici-
pants that learned English in a different country to the native
dialect of the voice actor (n=26). In both of these cases, par-
ticipants found the voice with human-like prosody harder to
comprehend. These findings suggest that introducing human-
like prosody to synthetic speech in human-robot interaction,
under certain circumstances, may lead to the voice becoming
less intelligible. This motivates further research and adds to
the growing body of literature on the multifaceted role that
voice plays in human-robot interaction.

I. Introduction
Language can be considered be the primary channel

of communication between humans, and as such can be
of critical value in human-robot interaction. The open-
ended nature of language makes it a universal, versatile
tool for issuing commands and receiving feedback from
robots, but it can also pave the way for less utilitarian,
more social paradigms of interaction.

As well as explicit semantic content that enables
people to exchange information rapidly and effectively,
speech also contains implicit information, providing
insight into the background of the speaker (i.e. age,
nationality, gender), their affective state, and identity
[1]. Much of this implicit information is captured in the
prosody of the voice. Prosody is understood to be a vocal
nonverbal signal, which “in perceptual terms, accounts
for how something is said”4 [3]. It refers to the rhythm,
stress, intonation, etc. of speech, and “plays a role in the
comprehension of spoken language by human listeners”
[4]. It is language- and culture-dependent [5], [6], [7], and
is a contributor to accent, both foreign [8], [9] and native
[10], [11], [12].
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While some HRI studies have utilized human voices,
namely through tele-operation or using pre-recorded
soundbites, most tend to use text-to-speech (TTS) en-
gines that generate synthetic speech in accordance with
the semantic text content provided and the markup lan-
guage supported by the software. These TTS programs
provide robots with different voices, accents and prosody,
offering the potential for robots to appear across a
spectrum of gender, age, and expressiveness.

While it may seem intuitively advantageous for a
robots’ voice to exhibit high levels of prosody, there are
several factors that could negatively affect the experi-
ence. On one hand, if the TTS system approaches human
speech in terms of naturalness, it is possible an uncanny
effect is observed, which may in turn cause a mismatch
between how the robot sounds, and how it appears and
behaves. Secondly, while changing prosody may enhance
the robots ability to convey affective expression, artifacts
introduced through modification of the intonation and
pitch of the voice may affect intelligibility of the speech
signal. It has been shown that prosody can increase
intelligibility, but only if the listener is culturally familiar
with the prosody source, [7] potentially making the
robot’s speech harder to comprehend if not.

Recent HRI research has found that changes to the
prosody of a robot’s voice can enhance its ability to
express affective states, however the effect of prosody
on intelligibility, while understood for human speech,
remains almost entirely unexplored for robot speech,
leaving robot designers with little insight into how best
to implement such a feature.

In this paper, we aim to explore how people com-
prehend robot speech that is tuned to imitate human
prosody. Using a mainstream TTS engine and experi-
mental methods drawn from the field of linguistics re-
search, the intelligibility of unaltered, ‘default’ sentences
was compared to ‘prosodic’ sentences manually tuned
to match the prosody of human actors. We examined
factors that we postulated might affect intelligibility
of prosodic speech; the length of the sentence uttered
(long/short), and whether or not the listener was a
native English speaker that learned English in the
same region as the human actor used to model the
prosody of the synthetic speech. We anticipate that the
findings of this research will be of broad interest to the
HRI community, especially to designers and researchers
engaged in experiments involving speech interaction.



II. Prior Work

The ability to produce prosodic speech to differing
extents is a feature in many speech synthesis engines
[13], often through the use of the World Wide Web Con-
sortium standard Speech Synthesis Markup Language
(SSML) [14], [15]. Despite speech synthesis being essen-
tial for speech-capable robots, recent research by McGinn
and Torres indicated that HRI researchers often do not
give much consideration to the voice the robot is given
during HRI experiments, and which has been shown to
affect the mental models that they subsequently form of
the robot [16], [17].

Existing research into robot speech prosody has pri-
marily been towards the goal of conveying emotion.
As reviewed in 2016 by Crumpton and Bethel [18],
conveying emotion through robot speech has been done
both by fine-tuning prosody in speech sections (often
using SSML) or by applying more global prosody settings
to entire statements (with other markup tools such as
EmotionML [19]). Other studies explore the impact of
prosody on naturalness and robot acceptance, notably
through the prosodic feature of intonation. In a study
by van Straten et al. [20] robot intonation was shown to
impact the affective state of children with autism spec-
trum conditions, and more recently, Velner, Boersma,
and de Graaf [21] studied how humanlike intonation
for robot speech could affect how it was perceived. The
less-explored visual component of prosody has also seen
initial research in the context of human-robot interaction
by Hill and Vaikiotis-Bateson, through a virtual talking
head “adaptable to robots” [22, p. 63].

The use of prosody to increase robot speech intelligi-
bility was explored in a preliminary study by Lee [23].
In a within-subjects study, comprehension was measured
for 21 participants through recall of weather forecast
information expressed by the robot, and differences were
compared between three levels of overall pitch in the
robot’s voice (presented in fixed order to participants).

The study of robot speech being inherently multidis-
ciplinary (drawing from robot engineering as well as
linguistics and audiology), robust methods for assess-
ing intelligibility are seldom encountered, despite being
common in the study of speech synthesis [24], [25],
including when pertaining to prosody [26], [27], [28]. For
assessing intelligibility of speech in the fields of audiology
and linguistics, speech-in-noise (SIN) methods are often
employed [29], [30], [31], in which speech is overlaid with
noise to increase the difficulty of the listening task to
distinguish between control conditions, avoiding “ceiling
performance” [31, p. 2]. For this purpose, standard
sentence lists such as the Bamford-Kowal-Bench (BKB)
list [32] are used. The BKB sentence lists were used in
the development of several speech-in-noise tests [33] such
as HINT [34] and BKB-SIN [35]. BKB sentence lists and
similar lists have also used in context of speech prosody
[36], [37].

III. Methodology
A. Preparation of Experiment

Stimuli for this experiment took the form of videos.
In each video, a social robot expressed a sentence in
one of the four synthetic voice conditions (either male
or female, and either ‘default’ or ‘human’). To increase
the difficulty of perception of the sentence, the audio
in each video was overlaid with speech-shaped noise.
This approach, known as speech-in-noise testing is widely
used in audiology testing as playing clear audio of
each sentence to participants may lead to near-100%
comprehension rates, obscuring any differences in test
conditions–adding noise avoids “ceiling performance”
[31, p. 2]. For this task, speech-shaped noise provided
by Harvard Speech Corpus [38] was added to the videos
at a signal-to-noise ratio of 4dB. To avoid a harsh start
and stop, the noise was set to fade in before the sentence
was heard and fade out after.

Synthetic speech generation: Synthetic speech was
generated using the Google Speech Synthesis API (June
17 2021 release). This was selected because it was among
the most natural-sounding commercial TTS system avail-
able, it appeared to be widely used in the HRI commu-
nity [39], [40], [41], and it supported speech synthesis
markup language (SSML), the markup language that
allows relatively fine grain control of speech prosody.

First, synthetic speech was created by passing the
sentences in the sentence corpus to the TTS system
without modification. This produced utterances with rel-
atively generic prosody, that generally lacked contextual
expressiveness.

To generate speech with human-like prosody, record-
ings were first made of 5 voice actors who were instructed
to speak each of the sentences in the sentence corpus in
an expressive way. All actors spoke with a dialect that
was native to the region where the experiment was per-
formed. An informal survey was then conducted in which
5 college students were asked to rank each voice recording
by “most-to-least natural”; the top-ranking recording of
each sentences was retained and subsequently used as
the model to construct the synthetic humanly-prosodic
voice. Using Audacity, the speech signal of each of these
model sentences was analyzed for pitch, timing (i.e.
duration of pauses between words) and rate (i.e. speed
that words were pronounced). This information was
encoded in SSML and was subsequently used by the TTS
engine to generate the synthetic prosodic speech. Pitch
was controlled for each individual word using the pitch
attribute of the prosody element, timing was controlled
using the break element, and the rate attribute of the
prosody element was used to slow down or speed up
words. This is illustrated in the following example SSML
snippet:
<s xml:lang=”en-UK”>

they <prosody pitch=”-2st”>waited</prosody> for
<prosody pitch=”+2st” rate=”slow”>one</prosody>
<prosody pitch=”+1st”>hour</prosody>



<break time=”0.1s”/>
<prosody pitch=”+1st”>while the</prosody>
<prosody pitch=”-3st”>train</prosody>
<prosody pitch=”+3st”>stopped</prosody>
<prosody pitch=”+1st”>at the</prosody>
<prosody pitch=”-1st”>station.</prosody>

</s>

Recordings using both ‘default’ and ‘human’ config-
urations were made in two voice conditions: one male
(“en-US-Wavenet-D”) and one female (“en-US-Wavenet-
G”).

Visual presentation: Videos were created showing a
social robot speaking each sentence. The Stevie robot
[42] was selected for the experiment due to its availability
to the researchers as well as its ability to move its mouth
while speaking, which was deemed important for the
purpose of a video. For this experiment, videos of Stevie
talking were recorded on a chroma key backdrop which
was replaced with a white background, and overlayed
with the generated audio sentences to produce videos
for each sentence and test condition.

Sentence corpus and measures: Sentences used in the
experiment were taken from the Bamford-Kowal-Bench
(BKB) sentence list [32]. Sixteen BKB sentences in total
were used. Sentences were only chosen if they were not
deemed to be age or culturally dependent. Sentences
1-8 were extracted verbatim from the BKB sentence
list, while sentences 9-16 were constructed by combining
two standard BKB sentences using connective words.
This allowed us to explore how prosody affected the
comprehension of relatively larger and shorter sentences.
The 16 sentences used in the study are given in Table I.

The BKB lexicon was designed to measure speech com-
prehension. Each sentence contains 3 or 4 “keywords”,
and each correctly-transcribed keyword counts as a single
point, providing a score out of 3 or 4 for each sentence.
For the dual-clause sentences, being composed of two
basic sentences, the score was out of 6, 7 or 8. For each
sentence, scores were normalized and represented as a
comprehension rate between 0 and 1, representing the
proportion of correctly transcribed keywords.

B. Procedure
Participants were first asked to read an information

sheet and provide written informed consent in accor-
dance with ethics requirements. Afterwards, participants
were seated at a PC and asked to put on high quality
over-ear headphones.5 The experiment was implemented
in Python using PsychoPy libraries [43]. The experiment
was programmed to play sixteen videos of the robot, one
for each expressed sentence. Following each video, the
participant was required to type the perceived sentence,
transcribing as completely and accurately as possible.
Once completed, the participant clicked a button to

5Precautions were taken in regards to the ongoing COVID-19
pandemic; all equipment was thoroughly wiped using antibacterial
wipes before participant contact, and personal protective equip-
ment (PPE) was provided.

TABLE I: List of the shorter (1-8) and longer (9-16)
sentences used in the experiment. In accordance with
the BKB lexicon, one point was awarded for each word
in capital letters that was correctly identified.

Single-clause (extracted from BKB sentence corpus)

1 YELLOW PEARS were LOVELY

2 Some MEN SHAVE in the MORNING

3 The BIG FISH GOT AWAY

4 SHE’S CALLING her DAUGHTER

5 THEY KNOCKED on the WINDOW

6 THEY WALKED ACROSS the GRASS

7 HE DROPPED his MONEY

8 The DOGS GO for a WALK

Dual-clause (composite of 2 sentences from BKB sentence corpus)

9 THEY WAITED for ONE HOUR while the TRAIN STOPPED at the STATION

10 The FIRE is VERY HOT but the ROOM’S GETTING COLD

11 The LADY WASHED the SHIRT since the WASHING MACHINE BROKE

12 The OLD MAN WORRIES that a TREE FELL ON the HOUSE

13 The FOOTBALL GAME’S OVER and PEOPLE are GOING HOME

14 The TWO FARMERS are TALKING as THEY SIT on a WOODEN BENCH

15 The DAUGHTER LAID the TABLE, and the CHILDREN are ALL EATING

16 While the TRUCK CLIMBS the HILL, the DRIVER WAITS by the CORNER

advance to the next video. Screenshots showing different
stages of the testing procedure are given in Figure 1.

Videos were presented in random order to each partic-
ipant, with no repeated sentences and an even distribu-
tion of factor permutations (prosody type, ). Subsequent
participant stimuli were counterbalanced, ensuring each
permutation was evenly represented across the sample.

Videos were presented in random order, with randomly
selected prosody type for each (‘default’ vs ‘human’),
selected in advance to ensure even distribution of test
factors (prosody type and sentence length). Test factors
were also counterbalanced for subsequent participants—
as each participant would only hear each sentence once ,
this ensured each sentence was expressed in all conditions
the same number of times over the course of the
experiment.

Upon completion of the experiment, the participant
was asked to complete a demographics form. The par-
ticipant was supervised by a researcher during the
experiment and was thanked for their participation upon
completion. When the experiment was finished, data was
logged to CSV files on the host PC.

C. Participants
Participant recruitment was conducted in two loca-

tions; a university campus and a gift shop in a de-
partment store. For each participant, country of origin,
country where English was learned, and English language
fluency were recorded, as well as whether the participant
had any conditions that might impair hearing or speech
comprehension.



(a) Test guidelines shared with participants at the beginning
of the experiment

(b) A video of the robot taking was shown to the participant
with randomly selected and counterbalanced speech condi-
tions, overlaid with noise

(c) Participants could begin to transcribe what they heard
before the end of the video

(d) When the video ended, participants could finish tran-
scribing what they heard and move on to the next video

Fig. 1: Screenshots of the testing software.

D. Statistical analysis
In order to analyze differences in means for compre-

hension rates for both prosody test conditions over the
two studied factors of sentence length and familiarity
with local English, a mixed-measures 3-way analysis
of variance (ANOVA) was conducted. Sentence length
and prosody type were within-subjects factors, and
familiarity with local English was a between-subjects
factor. This form of analysis was selected so that both
first-order and interaction effects between factors could
be studied, and was calculated in R [44].

IV. Results
In total, 53 participants volunteered for the experi-

ment, of which one that did not complete the experiment,
resulting in 52 total participant data points. 11 partic-
ipants were recruited in the gift shop (mean age of 26,
standard deviation of 7.1, 4 female, 7 male), and 41 from
a college campus (mean age of 22, standard deviation of
3.5, 10 female, 14 male, 3 other). 31 participants reported
being native English speakers, and 26 participants were
fluent English speakers that learned English in the local
region.

Analysis of first-order effects, with both sentence
lengths and both voice types aggregated for each partici-
pant, shows a significant difference in the comprehension
of ‘default’ speech (µ = 0.742) and ‘human’ speech
(µ = 0.679); F (50) = 10.329, p = 0.002. Two second-
order interactions with prosody levels were shown; with
the factor of sentence length; F (50) = 5.2935, p = 0.026,
and listener locality; F (50) = 5.1114, p = 0.028. No
significant third order interaction was identified between
all three factors of prosody level, listener locality, and
sentence length; F (50) = 0.51082, p = 0.48.

Visualisations of results are shown in Figures 2 and 3.

V. Discussion
In this study, we did not find that robot speech

exhibiting prosody was easier to comprehend. Rather,
the results indicated that the presence of human-like
prosody made the speech less intelligible.

One plausible explanation for this effect is that, while
prosody might enhance second order effects in human-
robot interaction (boosting expressiveness, conveying af-
fect, etc.), possibly increasing robot acceptance, changes
it introduces to the pitch, rate and timing of the
spoken sentence may come with the trade-off of making
comprehension harder, not easier. This is correlated with
the prior finding that casual human speech was shown to
yield less intelligible prosody than other, more deliberate
ways of speaking [45]. Furthermore, as prosody can
provide contextual cues, sentences uttered with little
context may have been harder to understand. This is
supported by the finding that shorter sentences were
significantly harder to comprehend when spoken in the
‘human’ voice condition. As the two clauses of the longer
sentences were semantically linked, it may have been



Fig. 2: Box plot of overall paired comprehension ratios
for ‘default’ and ‘human’ prosody conditions

easier to reconstruct misheard words, whereas the above
issue is compounded for shorter sentences.

The interaction effect identified between prosody levels
and locality on comprehension can be visually observed
in Figure 3; the degree to which ‘human’ prosody neg-
atively affected comprehension was substantially more
severe for non-locals (graphs on the right), with sub-
stantially smaller differences in means for locals (graphs
on the left). This also supports the above explanation;
participants who did not learn English in the local region
found it more challenging to comprehend prosodic speech
modeled on an actor with a dialect from that region. An
intuitive reason for this is the region-dependent nature of
prosody; prosody that matches an accent the listener is
closely familiar with is less likely to cause comprehension
issues, but contextual cues provided by prosody from a
foreign dialect may be lost, and the resulting speech less
intelligible to the listener. This explanation is consistent
with findings in the literature regarding foreign prosody
comprehension [7].6

While not accounting for the observed interaction
effects, an alternative explanation for our findings may be
connected with limitations in the TTS engine’s ability
to produce prosodic speech. While efforts were made
to model the synthetic speech as closely as possible
on natural speech, commercial TTS remain limited in
their ability to reproduce the richness of human speech.

6In a 2000 experiment by Pennington and Ellis, it was shown
that for Cantonese speakers listening to English, some of the
disambiguating benefits of prosody were diminished as “they did
not seem to have the relevant knowledge of how [prosody] resolves
ambiguity” [7, p. 187].

Fig. 3: Box plots of paired comprehension ratios for for
‘default’ and ‘human’ prosody conditions, along both
levels of participant English dialect locality (local and
nonlocal) and sentence length (short, long and overall)

Although the pitch of whole words could be modified, it
was not possible to control the pitch contour, leading to
the loss of, for example, any rising inflection on individual
words. As a result, it is possible that comprehension was
decreased was because the prosody was “not sufficiently
human-like”.

We know from previous research that prosody has
an impact on intelligibility as well as naturalness and
acceptance by humans; these results provide analogous
evidence that prosody also affects robot speech compre-
hension, and suggests that design efforts to increase the
latter may negatively affect the former. These findings
provide new insights into the use of prosody in robot
speech, and make clearer its potential benefits and
drawbacks when used in robot design and human-robot
interaction.

As prosody is context-dependent, robot developers
should consider how much context will apply to a robot’s
utterances, and envisage discarding human-like prosody
if there is little context to utterances in its use case.
Perhaps more importantly, developers should consider
their target audience and culture; depending on the
manner of speaking that an audience is accustomed
to, a mismatch may result in a decrease in overall
comprehension.7 What our results suggest in this regard

7A deeper factor yet to consider is that, depending on the
context, being perceived as a certain ethnicity may trigger dis-
criminatory, even xenophobic biases in the human observer [46],
[47]. This has been a topic of conversation in robo-ethics in recent
years [48], [49].



is that tailoring robot prosody to match the cultural
expectations of the audience may increase acceptance
and anthropomorphism without sacrificing intelligibility,
but developers should remain aware of the broader social
and ethical implications in assigning ethnic traits to a
robot, notably if this would contribute to existing racial
biases.

Limitations and future work
Several limitations were identified in this experiment,

the first being those of the text-to-speech engine. Al-
though mainstream in use and availability, the TTS
engine we used did not allow absolute pitch specification,
and instead pitch must be determined iteratively relative
to the default output for each sentence. Also, as men-
tioned earlier in the section, the software did not allow us
to implement pitch contour control. Although unlikely to
be the only reason for the observed difference, especially
considering the difference in results between the studied
test conditions, the decrease in comprehension when
prosody was modified may have been influenced by this
shortcoming–more control over prosodic alterations are
encouraged in future studies. In the same regard, future
experiments building on this might explore the mapping
of other human prosody elements aside from pitch and
duration, such as loudness and timbre, experimenting
with different TTS systems that might offer more varied
(or improved) parameter control, or in the case where
source prosody is immediately available, exploring non-
TTS methods of speech generation such as voice filtering
[50].

A single type of noise (speech-shaped noise from the
Harvard speech corpus [38]) was used at a fixed signal-to-
noise ratio in this experiment. Future work may explore
a variety of noise types, either contextual (such as
environmental background noises) or generated to match
the audio characteristics of each individual synthetic
voice. Also, although not necessary for speech-in-noise
testing, a range of different signal-to-noise ratios would
provide more thorough results.

We explored the impact of cultural background in
regards to robot speech comprehension, based on the
prosody of local English, showing preliminary indications
that a foreign prosody can have an adverse effect on com-
prehension. The relatively small sample size in this study
made it difficult to study distinctions between groups
any further; future research may investigate the effects
of local prosody for both local and foreign participants,
restricted to only native English speakers. Pushing this
approach further, as accents have been shown to have
an effect on robot perception [51], of interest would be a
larger study involving multiple prosodies from different
world origins, and their intelligibility by a more diverse
pool of participants.

Finally, the robot used in this context was virtual,
presented to participants in the form of a video on a
PC screen. Employing a physical embodied robot would

more accurately simulate the experience of interacting
with a robot in a real-world use-case. However, we also
anticipate drawbacks of this embodied approach, namely
in terms of overall repeatably since ensuring the same
level of control over acoustics parameters during the
experiment would be notably weaker.

VI. Conclusion
In our study, we explored the effect of applying

human-like prosody to robotic speech had on aural
comprehension. Our results suggest that under certain
circumstances, such as when expressing short utterances
with little context, or when the prosody is foreign
to the listener, human-like prosody may adversely af-
fect comprehension by comparison to default prosody
generated automatically by the TTS engine. Another
interpretation of these findings may be that the ability
of state of the art TTS engines remains limited, and even
under ideal circumstances, synthetic speech generated to
have contextual humanlike prosody remains difficult to
comprehend.

For robotics developers who are considering enhancing
the prosody of their robot platform, the takeaways we
propose from this study are a greater awareness of con-
founding role that prosody plays in the comprehension
of robot speech, and its close relationship with context
and its cultural provenance.

We hope to also highlight the relatively small overlap
between the field of human-robot interaction and those
of linguistics, audiology and acoustics, and encourage
HRI researchers to embrace experimental methods from
these fields when pertinent to ensure scientific rigor.

References
[1] P. Belin, “Voice processing in human and non-human pri-

mates,” Philosophical Transactions of the Royal Society B:
Biological Sciences, vol. 361, no. 1476, pp. 2091–2107, 2006.

[2] A. Vinciarelli, M. Pantic, H. Bourlard, and A. Pentland,
“Social signal processing: State-of-the-art and future perspec-
tives of an emerging domain,” in Proceedings of the 16th
ACM International Conference on Multimedia, MM ’08, (New
York, NY, USA), p. 1061–1070, Association for Computing
Machinery, 2008.

[3] X. Huang, A. Acero, and H.-W. Hon, Spoken Language
Processing: Guide to Algorithms and System Development.
Prentice Hall, 2001.

[4] L. Mary, “Significance of prosody for speaker, language
and speech recognition,” in Extraction and Representation
of Prosody for Speaker, Speech and Language Recognition,
pp. 1–18, Springer, 2012.

[5] P. Warren, “Prosody and parsing: An introduction,” Language
and Cognitive Processes, vol. 11, pp. 1–16, 4 1996.

[6] D. Hirst and A. D. Cristo, Intonation systems: a survey of
twenty languages. Cambridge University Press, 1998.

[7] M. C. Pennington and N. C. Ellis, “Cantonese speakers’
memory for English sentences with prosodic cues,” Modern
Language Journal, vol. 84, pp. 372–389, 2000.

[8] M. Jilka, “Testing the contribution of prosody to the per-
ception of foreign accent,” in New Sounds 2000: Proceedings
of the Fourth International Symposium on the Acquisition of
Second-Language Speech, pp. 199–207, 2000.

[9] P. B. D. Mareüil and B. Vieru-Dimulescu, “The contribution
of prosody to the perception of foreign accent,” Phonetica,
vol. 63, pp. 247–267, 12 2006.



[10] S. Peppé, J. Maxim, and B. Wells, “Prosodic variation in
southern British English,” Language and Speech, vol. 43,
pp. 309–334, 2000.

[11] U. Gut and J.-T. Milde, “The prosody of Nigerian English,”
in Speech Prosody 2002, International Conference, John Ben-
jamins Publishing Company, 2002.

[12] E. Couper-Kuhlen, “The prosody of other-repetition in British
and North American English,” Language in Society, vol. 49,
pp. 521–552, 9 2020.

[13] Z. Yin, “An overview of speech synthesis technology,” in 2018
Eighth International Conference on Instrumentation & Mea-
surement, Computer, Communication and Control (IMCCC),
pp. 522–526, 2018.

[14] P. Baggia, P. Bagshaw, M. Bodell, D. Z. Huang, L. Xiaoyan,
S. McGlashan, J. Tao, Y. Jun, H. Fang, Y. Kang, et al.,
“Speech synthesis markup language (SSML) version 1.1,”
2010.

[15] P. Baggia, “Speech standards: Lessons learnt,” in Human 4.0-
From Biology to Cybernetic, IntechOpen, 2020.

[16] C. McGinn and I. Torre, “Can you tell the robot by the voice?
an exploratory study on the role of voice in the perception of
robots,” in 2019 14th ACM/IEEE International Conference on
Human-Robot Interaction (HRI), pp. 211–221, IEEE, 2019.

[17] I. Torre, A. B. Latupeirissa, and C. McGinn, “How context
shapes the appropriateness of a robot’s voice,” in 2020 29th
IEEE International Conference on Robot and Human Inter-
active Communication (RO-MAN), pp. 215–222, IEEE, 2020.

[18] J. Crumpton and C. L. Bethel, “A survey of using vocal
prosody to convey emotion in robot speech,” International
Journal of Social Robotics, vol. 8, pp. 271–285, 4 2016.

[19] M. Schröeder, P. Baggia, F. Burkhardt, C. Pelachaud, C. Pe-
ter, and E. Zovato, “Emotion markup language (EmotionML)
1.0,” World Wide Web Consortium, Recommendation REC-
emotionml-20140522, 2014.

[20] C. L. van Straten, I. Smeekens, E. Barakova, J. Glennon,
J. Buitelaar, and A. Chen, “Effects of robots’ intonation and
bodily appearance on robot-mediated communicative treat-
ment outcomes for children with autism spectrum disorder,”
Personal and Ubiquitous Computing, vol. 22, pp. 379–390, 4
2018.

[21] E. Velner, P. P. Boersma, and M. M. de Graaf, “Intonation
in robot speech: Does it work the same as with people?,” in
Proceedings of the 2020 ACM/IEEE International Conference
on Human-Robot Interaction, pp. 569–578, ACM, 3 2020.

[22] H. Hill and E. Vaikiotis-Bateson, “Using graphics to study the
perception of speech-in-noise, and vice versa,” in Auditory-
Visual Speech Processing (AVSP ’05), pp. 63–64, 2005.

[23] J. Lee, “Generating robotic speech prosody for human robot
interaction: A preliminary study,” Applied Sciences, vol. 11,
p. 3468, 4 2021.

[24] M. Cooke, C. Mayo, C. Valentini-Botinhao, Y. Stylianou,
B. Sauert, and Y. Tang, “Evaluating the intelligibility benefit
of speech modifications in known noise conditions,” Speech
Communication, vol. 55, pp. 572–585, 5 2013.

[25] C. Valentini-Botinhao, J. Yamagishi, and S. King, “Can ob-
jective measures predict the intelligibility of modified HMM-
based synthetic speech in noise?,” in Twelfth Annual Confer-
ence of the International Speech Communication Association,
pp. 1837–1840, 2011.

[26] K. E. Silverman, “On customizing prosody in speech synthesis:
Names and addresses as a case in point,” in Human Language
Technology: Proceedings of a Workshop Held at Plainsboro,
New Jersey, March 21-24, 1993, 1993.

[27] N. Campbell, “Evaluation of speech synthesis,” in Evaluation
of text and speech systems, pp. 29–64, Springer, 2007.

[28] A. A. Sanderman and R. Collier, “Prosodic phrasing and
comprehension,” Language and Speech, vol. 40, no. 4, pp. 391–
409, 1997.

[29] D. Von Hapsburg, C. A. Champlin, and S. R. Shetty, “Re-
ception thresholds for sentences in bilingual (spanish/english)
and monolingual (english) listeners,” Journal of the American
Academy of Audiology, vol. 15, no. 1, pp. 88–98, 2004.

[30] L. H. Mayo, M. Florentine, and S. Buus, “Age of second-
language acquisition and perception of speech in noise,”

Journal of speech, language, and hearing research, vol. 40,
no. 3, pp. 686–693, 1997.

[31] K. J. van Engen, B. Chandrasekaran, and R. Smiljanic,
“Effects of speech clarity on recognition memory for spoken
sentences,” PLoS ONE, vol. 7, 2012.

[32] J. Bench, Åse Kowal, and J. Bamford, “The BKB (Bamford-
Kowal-Bench) sentence lists for partially-hearing children,”
British Journal of Audiology, vol. 13, pp. 108–112, 1 1979.

[33] S. Sharma, R. Tripathy, and U. Saxena, “Critical appraisal
of speech in noise tests: a systematic review and survey,”
International Journal of Research in Medical Sciences, vol. 5,
p. 13, 12 2016.

[34] M. Nilsson, S. D. Soli, and J. A. Sullivan, “Development of the
Hearing In Noise Test for the measurement of speech reception
thresholds in quiet and in noise,” The Journal of the Acoustical
Society of America, vol. 95, pp. 1085–1099, 2 1994.

[35] E. Research, “The BKB-SIN test booklet,” 2005.
[36] D.-J. Shin and P. Iverson, “Training Korean second language

speakers on English vowels and prosody,” The Journal of the
Acoustical Society of America, vol. 19, pp. 060048–060048,
2013.

[37] I. Hove and V. Dellwo, “The effects of voice disguise on f0 and
on the formants,” Proceedings of IAFPA 2014, 2014.

[38] P. Demonte, “Speech shaped noise master audio - HARVARD
speech corpus,” Oct 2019.

[39] M. J. Hossain, S. M. A. Amin, M. S. Islam, and Marium-E-
Jannat, “Development of robotic voice conversion for RIBO
using text-to-speech synthesis,” in 2018 4th International
Conference on Electrical Engineering and Information &
Communication Technology (iCEEiCT), pp. 422–425, IEEE,
9 2018.

[40] J. James, B. T. Balamurali, C. I. Watson, and B. MacDon-
ald, “Empathetic speech synthesis and testing for healthcare
robots,” International Journal of Social Robotics, 9 2020.

[41] V. Seib, R. Memmesheimer, and D. Paulus, “A ROS-based
system for an autonomous service robot,” in Robot Operating
System (ROS), pp. 215–252, Springer, 2016.

[42] L. Taylor, A. Downing, G. A. Noury, G. Masala, M. Palomino,
C. McGinn, and R. Jones, “Exploring the applicability of
the socially assistive robot Stevie in a day center for people
with dementia,” in 2021 30th IEEE International Conference
on Robot & Human Interactive Communication (RO-MAN),
pp. 957–962, IEEE, 2021.

[43] J. W. Peirce, “PsychoPy–psychophysics software in python,”
Journal of Neuroscience Methods, vol. 162, pp. 8–13, 5 2007.

[44] R Core Team, R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical
Computing, 2021.

[45] P. Price, M. Ostendorf, S. Shattuck‐Hufnagel, and N. Veilleux,
“A methodology for analyzing prosody,” The Journal of the
Acoustical Society of America, vol. 84, pp. S99–S99, 11 1988.

[46] F. Eyssel and D. Kuchenbrandt, “Social categorization of
social robots: Anthropomorphism as a function of robot group
membership,” British Journal of Social Psychology, vol. 51,
pp. 724–731, 12 2012.

[47] A. Esposito, T. Amorese, M. Cuciniello, M. T. Riviello, and
G. Cordasco, “How human likeness, gender and ethnicity affect
elders’ acceptance of assistive robots,” in 2020 IEEE Inter-
national Conference on Human-Machine Systems (ICHMS),
pp. 1–6, IEEE, 9 2020.

[48] C. Klein and D. Allan, “Robot racism? Yes, says a study
showing humans’ biases extend to robots,” 2019.

[49] R. Sparrow, “Robotics has a race problem,” Science, Technol-
ogy, & Human Values, vol. 45, pp. 538–560, 5 2020.

[50] A. Gabryś, G. Huybrechts, M. S. Ribeiro, C.-M. Chien,
J. Roth, G. Comini, R. Barra-Chicote, B. Perz, and J. Lorenzo-
Trueba, “Voice Filter: Few-Shot Text-to-Speech Speaker
Adaptation Using Voice Conversion as a Post-Processing Mod-
ule,” in ICASSP 2022 - 2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 7902–
7906, May 2022. ISSN: 2379-190X.

[51] R. Tamagawa, C. I. Watson, I. H. Kuo, B. A. MacDonald,
and E. Broadbent, “The effects of synthesized voice accents
on user perceptions of robots,” International Journal of Social
Robotics, vol. 3, pp. 253–262, 8 2011.


